Out-colourings of Digraphs

نویسندگان

  • Noga Alon
  • Jørgen Bang-Jensen
  • Stéphane Bessy
چکیده

We study vertex colourings of digraphs so that no out-neighbourhood is monochromatic and call such a colouring an out-colouring. The problem of deciding whether a given digraph has an out-colouring with only two colours (called a 2-out-colouring) is NP-complete. We show that for every choice of positive integers r, k there exists a k-strong bipartite tournament which needs at least r colours in every out-colouring. Our main results are on tournaments and semicomplete digraphs. We prove that, except for the Paley tournament P7, every strong semicomplete digraph of minimum out-degree at least 3 has a 2-out-colouring. Furthermore, we show that every semicomplete digraph on at least 7 vertices has a 2-out-colouring if and only if it has a balanced such colouring, that is, the difference between the number of vertices that receive colour 1 and colour 2 is at most one. In the second half of the paper we consider the generalization of 2-out-colourings to vertex partitions (V1, V2) of a digraph D so that each of the three digraphs induced by respectively, the vertices of V1, the vertices of V2 and all arcs between V1 and V2 have minimum out-degree k for a prescribed integer k ≥ 1. Using probabilistic arguments we prove that there exists an absolute positive constant c so that every semicomplete digraph of minimum out-degree at least 2k + c √ k has such a partition. This is tight up to the value of c.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colourings, homomorphisms, and partitions of transitive digraphs

We investigate the complexity of generalizations of colourings (acyclic colourings, (k, `)colourings, homomorphisms, and matrix partitions), for the class of transitive digraphs. Even though transitive digraphs are nicely structured, many problems are intractable, and their complexity turns out to be difficult to classify. We present some motivational results and several open problems.

متن کامل

Majority Colourings of Digraphs

We prove that every digraph has a vertex 4-colouring such that for each vertex v, at most half the out-neighbours of v receive the same colour as v. We then obtain several results related to the conjecture obtained by replacing 4 by 3.

متن کامل

Out-degree reducing partitions of digraphs

Let $k$ be a fixed integer. We determine the complexity of finding a $p$-partition $(V_1, \dots, V_p)$ of the vertex set of a given digraph such that the maximum out-degree of each of the digraphs induced by $V_i$, ($1\leq i\leq p$) is at least $k$ smaller than the maximum out-degree of $D$. We show that this problem is polynomial-time solvable when $p\geq 2k$ and ${\cal NP}$-complete otherwise...

متن کامل

On path partitions and colourings in digraphs

We provide a new proof of a theorem of Saks which is an extension of Greene’s Theorem to acyclic digraphs, by reducing it to a similar, known extension of Greene and Kleitman’s Theorem. This suggests that the Greene-Kleitman Theorem is stronger than Greene’s Theorem on posets. We leave it as an open question whether the same holds for all digraphs, that is, does Berge’s conjecture concerning pa...

متن کامل

The acyclic disconnection of a digraph

In this paper we introduce a numerical invariant of digraphs which generalizes that of the number of connected components of a graph. The ao,clic disconnection ~(D) of a digraph D is the minimum number of (weakly) connected components of the subdigraphs obtained from D by deleting an acyclic set of arcs. We state some results about this invariant and compute its value for a variety of circulant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.06441  شماره 

صفحات  -

تاریخ انتشار 2017